Transparent Conducting Oxide Electrodes Requirements for High Efficiency Micromorph Solar Cells

نویسندگان

  • M. Boccard
  • P. Cuony
  • T. Söderström
  • G. Bugnon
  • M. Despeisse
  • C. Battaglia
  • L. Ding
  • S. Nicolay
  • C. Ballif
چکیده

The requirements for a micromorph tandem cell front transparent conductive oxide (TCO) are multiple. This essential layer needs a high transparency, excellent conduction, strong light scattering into silicon and good surface morphology for the subsequent growth of silicon cells. These parameters are all linked and trade-offs have to be found for optimal layer. The optimum combination, taking into account current achievable materials properties, is still unclear. Concerning transparency, we study here the impact of free carrier absorption (FCA) on the photogenerated current by using first doped and non-intentionally-doped zinc oxide (ZnO). Then, Bi-layers made of flat indium tin oxide (ITO) under various thicknesses of rough ZnO allow a study of the haze influence alone. It is shown that FCA induces drastic current losses in the infra-red part of the spectrum, and haze increase enhances the cell response in the infra-red part up to a certain limit of grain size. Surface feature sizes above 0.4μm appear to be useless for haze increase purpose at the ZnO/Si interface. By using an optimized 2μm thick LPCVD ZnO, micromorph cells showing 13.7% initial efficiency, with a total current of 27.7 mA/cm could be obtained with 240nm and 2.8μm of top and bottom cell thicknesses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-efficiency Micromorph Silicon Solar Cells with In-situ Intermediate Reflector Deposited on Various Rough Lpcvd Zno

Light management using intermediate reflector layers (IRL) and advanced front transparent conductive oxide (TCO) morphologies is needed to rise the short-circuit current density (Jsc) of micromorph tandem solar cells above 14 mA/cm. For micromorph cells deposited on surface-textured ZnO layers grown by low-pressure chemical vapour deposition (LPCVD), we study the interplay between the front TCO...

متن کامل

Nanoimprint lithography for high-efficiency thin-film silicon solar cells.

We demonstrate high-efficiency thin-film silicon solar cells with transparent nanotextured front electrodes fabricated via ultraviolet nanoimprint lithography on glass substrates. By replicating the morphology of state-of-the-art nanotextured zinc oxide front electrodes known for their exceptional light trapping properties, conversion efficiencies of up to 12.0% are achieved for micromorph tand...

متن کامل

Micromorph Cells Grown at High Rate with In-situ Intermediate Reflector in Industrial Kai Pecvd Reactors

We report on results of tandem amorphous/microcrystalline (a-Si:H/μc-Si:H) silicon solar cells developed in commercial Oerlikon Solar KAI PECVD reactors, at an excitation frequency of 40.68 MHz. The cell structure consists of a stack of glass/front contact/pin a-Si:H/intermediate reflector/pin μc-Si:H/back contact. LPCVD (low-pressure chemical vapor deposition) ZnO (zinc oxide) is applied as fr...

متن کامل

Highly efficient and bendable organic solar cells using a three-dimensional transparent conducting electrode.

A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010